Lagrange's Theorem

Sasha Patotski

Cornell University

ap744@cornell.edu

December 8, 2015

Definition

Let G be a group and X be a set. An **action** of G on X is a homomorphism $G \to Bij(X)$.

Equivalently, action of G on X is a map G × X → X, (g,x) → g.x such that g.(h.x) = (gh).x and e.x = x.

Definition

Let *G* be a group acting on a set *X*. The **orbit** of $x \in X$ is the set $Gx \subseteq X$, i.e. $Gx = \{g.x \mid g \in G\}$. For a point $x \in X$, its **stabilizer** G_x is the set $G_x = \{g \in G \mid g.x = x\}$.

(二回) (三) (三) (三)

Definition

Let G be a group and X be a set. An **action** of G on X is a homomorphism $G \to Bij(X)$.

Any abstract group G is actually a transformation group. Indeed, take X = G with $G \times X \to X$ being the multiplication map. In other words, to a $g \in G$ we associate a function $L_g : X \to X$, mapping $h \in X = G$ to $L_g(h) := gh$. This defines **injective** homomorphism $\varphi : G \to Bij(X), g \mapsto L_g$. **Corollary:** any finite group is a subgroup of S_n for some n.

• **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.

< 4 ► >

э

- **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.
- There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.

- **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.
- There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.
- What goes wrong if we put g.h = hg?

- **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.
- There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.
- What goes wrong if we put g.h = hg?
- **Recall:** if a group *G* acts on a set *X*, then any subgroup *H* ⊂ *G* also acts on *X*.

- **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.
- There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.
- What goes wrong if we put g.h = hg?
- **Recall:** if a group *G* acts on a set *X*, then any subgroup *H* ⊂ *G* also acts on *X*.

Definition

Let G be a group, and $H \subset G$ be a subgroup. Left (resp. right) **cosets** are the orbits of the right (resp. left) multiplication action of H on G.

- **Recall:** there is an action of *G* on itself by $g.h = L_g(h) = gh$ called **left multiplication**.
- There is a similar action called **right multiplication** given by $g.h = hg^{-1}$. Check that this is an action.
- What goes wrong if we put g.h = hg?
- **Recall:** if a group *G* acts on a set *X*, then any subgroup *H* ⊂ *G* also acts on *X*.

Definition

Let G be a group, and $H \subset G$ be a subgroup. Left (resp. right) **cosets** are the orbits of the right (resp. left) multiplication action of H on G.

• In other words, a **left** coset of H in G is gH where $g \in G$ (H is on the **right**).

A **right** coset of *H* in *G* is *Hg* where $g \in G$ (*H* is on the **left**).

Note: H → gH sending h → gh and H → Hg sending h → hg are bijections.

э

< 🗗 🕨

- Note: H → gH sending h → gh and H → Hg sending h → hg are bijections.
- For any $h \in H$, hH = Hh = H.

- Note: H → gH sending h → gh and H → Hg sending h → hg are bijections.
- For any $h \in H$, hH = Hh = H.
- Let $G = \mathbb{R}^2$, $H = \mathbb{R} \subset G$ be the horizontal axis. Then the (left and right) cosets are horizontal lines.

- Note: H → gH sending h → gh and H → Hg sending h → hg are bijections.
- For any $h \in H$, hH = Hh = H.
- Let $G = \mathbb{R}^2$, $H = \mathbb{R} \subset G$ be the horizontal axis. Then the (left and right) cosets are horizontal lines.
- Let $G = \mathbb{Z}$ and $H = \{\ldots, -3, 0, 3, 6, \ldots\}$. What are the cosets?

- Note: H → gH sending h → gh and H → Hg sending h → hg are bijections.
- For any $h \in H$, hH = Hh = H.
- Let $G = \mathbb{R}^2$, $H = \mathbb{R} \subset G$ be the horizontal axis. Then the (left and right) cosets are horizontal lines.
- Let $G = \mathbb{Z}$ and $H = \{\ldots, -3, 0, 3, 6, \ldots\}$. What are the cosets?
- Let $G = S_3$ and $H = \{1, (12)\}$. What are the cosets?

If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H.

If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H.

Corollary(Lagrange's theorem) If G is a finite group and H is a subgroup of G, then the order of H divides the order of G. In particular, the order of every element of G divides the order of G.

If two left cosets of H in G intersect, then they coincide, and similarly for right cosets. Thus, G is a disjoint union of left cosets of H and also a disjoint union of right cosets of H.

Corollary(Lagrange's theorem) If *G* is a finite group and *H* is a subgroup of *G*, then the order of *H* divides the order of *G*. In particular, the order of every element of *G* divides the order of *G*. **Proof:** |G|/|H| is the number of left (or right) cosets, and so is an integer.

For any integers $n \ge 0$ and $0 \le m \le n$, the number $\frac{n!}{m!(n-m)!}$ is an integer.

For any integers $n \ge 0$ and $0 \le m \le n$, the number $\frac{n!}{m!(n-m)!}$ is an integer.

Proof. The group $S_m \times S_{n-m}$ is a subgroup of S_n consisting of the permutations which permute $\{1, 2, ..., m\}$ and $\{m + 1, ..., n\}$.

For any integers $n \ge 0$ and $0 \le m \le n$, the number $\frac{n!}{m!(n-m)!}$ is an integer.

Proof. The group $S_m \times S_{n-m}$ is a subgroup of S_n consisting of the permutations which permute $\{1, 2, ..., m\}$ and $\{m + 1, ..., n\}$. This subgroup has m!(n - m)! elements, and Lagrange's theorem gives the result.

Applications of Lagrange's Theorem

Theorem

For any positive integers a, b the ratios $\frac{(ab)!}{(a!)^b}$ and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Applications of Lagrange's Theorem

Theorem

For any positive integers a, b the ratios
$$\frac{(ab)!}{(a!)^b}$$
 and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Write the integers from 1 to ab as b groups as follows:

$$1, 2, \dots, a \mid a + 1, \dots, 2a \mid \dots \mid (b - 1)a + 1 \dots, ba$$

For any positive integers a, b the ratios
$$\frac{(ab)!}{(a!)^b}$$
 and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Write the integers from 1 to ab as b groups as follows:

$$1, 2, \dots, a \mid a + 1, \dots, 2a \mid \dots \mid (b - 1)a + 1 \dots, ba$$

There is a subgroup of S_{ab} isomorphic to $\underbrace{S_a \times \cdots \times S_a}_{a}$ consisting of

b times permutations only permuting the numbers within their group. Lagrange's Theorem implies the first result.

For any positive integers a, b the ratios
$$\frac{(ab)!}{(a!)^b}$$
 and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Write the integers from 1 to ab as b groups as follows:

$$1, 2, \dots, a \mid a + 1, \dots, 2a \mid \dots \mid (b - 1)a + 1 \dots, ba$$

There is a subgroup of S_{ab} isomorphic to $\underbrace{S_a \times \cdots \times S_a}_{a}$ consisting of

permutations only permuting the numbers within their group.

Lagrange's Theorem implies the first result.

There is a subgroup of S_{ab} of permutations allowed to permute the above groups of numbers, and after that only to permute numbers within each group. Note that it's **not!** just $S_b \times S_a^b$.

For any positive integers a, b the ratios
$$\frac{(ab)!}{(a!)^b}$$
 and $\frac{(ab)!}{(a!)^b b!}$ are integers.

Write the integers from 1 to ab as b groups as follows:

$$1, 2, \dots, a \mid a + 1, \dots, 2a \mid \dots \mid (b - 1)a + 1 \dots, ba$$

There is a subgroup of S_{ab} isomorphic to $\underbrace{S_a \times \cdots \times S_a}_{a}$ consisting of

permutations only permuting the numbers within their group. Lagrange's Theorem implies the first result.

There is a subgroup of S_{ab} of permutations allowed to permute the above groups of numbers, and after that only to permute numbers within each group. Note that it's **not!** just $S_b \times S_a^b$. It has $b!(a!)^b$ elements, and Lagrange Theorem gives the proof of the

second statement.

For an integer m > 1 let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \ge 3$ the number $\varphi(m)$ is even.

For an integer m > 1 let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \ge 3$ the number $\varphi(m)$ is even.

Invertible numbers modulo *m* for a group, denoted $(\mathbb{Z}/m)^{\times}$, with group operation given by multiplication.

For an integer m > 1 let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \ge 3$ the number $\varphi(m)$ is even.

Invertible numbers modulo *m* for a group, denoted $(\mathbb{Z}/m)^{\times}$, with group operation given by multiplication.

For $m \geq 3$, $\{\pm 1\}$ is a subgroup of the group $(\mathbb{Z}/m)^{\times}$.

For an integer m > 1 let $\varphi(m)$ be the number of invertible numbers modulo m. For $m \ge 3$ the number $\varphi(m)$ is even.

Invertible numbers modulo *m* for a group, denoted $(\mathbb{Z}/m)^{\times}$, with group operation given by multiplication.

For $m \geq 3$, $\{\pm 1\}$ is a subgroup of the group $(\mathbb{Z}/m)^{\times}$.

This subgroup has size 2, so by Lagrange's theorem the number of elements in $(\mathbb{Z}/m)^{\times}$ is even.

Suppose that a finite group G acts on a finite set X. Then the number of colorings of X in n colors inequivalent under the action of G is

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

where c(g) is the number of cycles of g as a permutation of X.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

• What is the number of necklaces with 4 beads of two colors?

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.
- Summing up, $N(2) = \frac{1}{8}(16 + 4 + 4 + 24) = 6.$

$$N(n) = \frac{1}{|G|} \sum_{g \in G} n^{c(g)}$$

- What is the number of necklaces with 4 beads of two colors?
- First compute it directly.
- The symmetry group of a square has 8 elements: 4 rotations and 4 reflections.
- The identity element has 4 cycles, so it contributes $1 \cdot 2^4 = 16$.
- The rotations by $\pi/2$ and $3\pi/2$ have only one cycle, so they contribute $2 \cdot 2^1 = 4$.
- The rotation by π has two cycles, so it contributes $1 \cdot 2^2 = 4$.
- There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles, with contribute $2 \cdot 2^2 + 2 \cdot 2^3 = 24$.
- Summing up, $N(2) = \frac{1}{8}(16 + 4 + 4 + 24) = 6.$
- For *n* colors, $N(n) = \frac{n^4 + 2n^3 + 3n^2 + 2n}{8}$. For example, N(4) = 55.

11 / 12

• How many ways are there to color faces of a cube into *n* colors?

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.

• How many ways are there to color faces of a cube into *n* colors?

- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.

• How many ways are there to color faces of a cube into *n* colors?

- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.
- Rotations around the main diagonals (4 · 2 = 8 of them) have 2 cycles, so contribute 8 · n².

- How many ways are there to color faces of a cube into *n* colors?
- The element $1 \in S_4$ has 6 cycles, so contributes n^6 .
- Rotations by $\pi/2$ and $3\pi/2$ around axes through opposite faces $(2 \cdot 3 = 6 \text{ of them})$ have 3 cycles, so contribute $6 \cdot n^3$.
- Rotations by π (3 of them) have 4 cycles, so contribute $3 \cdot n^4$.
- Rotations around axes through midpoints of opposite edges (6 of them) have 3 cycles, hence contribute $6 \cdot n^3$.
- Rotations around the main diagonals (4 · 2 = 8 of them) have 2 cycles, so contribute 8 · n².
- Summing up, $N(n) = \frac{n^6 + 3n^4 + 12n^3 + 8n^2}{24}$