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Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a
homomorphism G — Bij(X).

e Equivalently, action of G on X isamap G x X — X, (g,x) — g.x
such that g.(h.x) = (gh).x and e.x = x.

Definition

Let G be a group acting on a set X. The orbit of x € X is the set
Gx C X,ie Gx={gx|ge G}
For a point x € X, its stabilizer G is the set G, = {g € G | g.x = x}.
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Abstract groups are not that abstract

Definition

Let G be a group and X be a set. An action of G on X is a
homomorphism G — Bij(X).

Any abstract group G is actually a transformation group.
Indeed, take X = G with G x X — X being the multiplication map.

In other words, to a g € G we associate a function Lg: X — X,
mapping h € X = G to Lg(h) := gh.

This defines injective homomorphism ¢: G — Bij(X), g — Lg.

Corollary: any finite group is a subgroup of S, for some n.
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.

@ There is a similar action called right multiplication given by
g.h = hg™1. Check that this is an action.
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.

@ There is a similar action called right multiplication given by
g.h = hg™1. Check that this is an action.

@ What goes wrong if we put g.h = hg?
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.

@ There is a similar action called right multiplication given by
g.h = hg™1. Check that this is an action.

@ What goes wrong if we put g.h = hg?

@ Recall: if a group G acts on a set X, then any subgroup H C G also
acts on X.
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.

@ There is a similar action called right multiplication given by
g.h = hg™1. Check that this is an action.

@ What goes wrong if we put g.h = hg?

@ Recall: if a group G acts on a set X, then any subgroup H C G also
acts on X.

Definition

Let G be a group, and H C G be a subgroup. Left (resp. right) cosets are
the orbits of the right (resp. left) multiplication action of H on G.
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@ Recall: there is an action of G on itself by g.h = Lg(h) = gh called
left multiplication.

@ There is a similar action called right multiplication given by
g.h = hg™1. Check that this is an action.

@ What goes wrong if we put g.h = hg?

@ Recall: if a group G acts on a set X, then any subgroup H C G also
acts on X.

Definition

Let G be a group, and H C G be a subgroup. Left (resp. right) cosets are
the orbits of the right (resp. left) multiplication action of H on G.

@ In other words, a left coset of H in G is gH where g € G (H is on
the right).
A right coset of H in G is Hg where g € G (H is on the left).

Sasha Patotski (Cornell University) Lagrange's Theorem December 8, 2015 4 /12



o Note: H — gH sending h+— gh and H — Hg sending h — hg are
bijections.
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o Note: H — gH sending h+— gh and H — Hg sending h — hg are
bijections.

@ Forany he H, hH= Hh=H.
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o Note: H — gH sending h+— gh and H — Hg sending h — hg are
bijections.

@ Forany he H, hH= Hh=H.

o Let G =R? H =R C G be the horizontal axis. Then the (left and
right) cosets are horizontal lines.
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Note: H — gH sending h — gh and H — Hg sending h — hg are
bijections.

Forany he H, hH = Hh = H.
Let G =R?, H=R C G be the horizontal axis. Then the (left and
right) cosets are horizontal lines.

o let G=Zand H={...,-3,0,3,6,...}. What are the cosets?
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o Note: H — gH sending h+— gh and H — Hg sending h — hg are
bijections.

@ Forany he H, hH= Hh=H.

o Let G =R? H =R C G be the horizontal axis. Then the (left and
right) cosets are horizontal lines.

o let G=Zand H={...,-3,0,3,6,...}. What are the cosets?
o Let G =53 and H = {1,(12)}. What are the cosets?
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If two left cosets of H in G intersect, then they coincide, and similarly for
right cosets. Thus, G is a disjoint union of left cosets of H and also a
disjoint union of right cosets of H.
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If two left cosets of H in G intersect, then they coincide, and similarly for
right cosets. Thus, G is a disjoint union of left cosets of H and also a
disjoint union of right cosets of H.

Corollary(Lagrange’s theorem) If G is a finite group and H is a
subgroup of G, then the order of H divides the order of G. In
particular, the order of every element of G divides the order of G.
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If two left cosets of H in G intersect, then they coincide, and similarly for
right cosets. Thus, G is a disjoint union of left cosets of H and also a
disjoint union of right cosets of H.

Corollary(Lagrange’s theorem) If G is a finite group and H is a
subgroup of G, then the order of H divides the order of G. In
particular, the order of every element of G divides the order of G.

Proof: |G|/|H| is the number of left (or right) cosets, and so is an
integer.
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Applications of Lagrange's Theorem

n!
n—m)!

For any integers n > 0 and 0 < m < n, the number il is an integer.
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Applications of Lagrange's Theorem

n!
n—m)!

For any integers n > 0 and 0 < m < n, the number il is an integer.

Proof. The group S, X Sp—m is a subgroup of S, consisting of the
permutations which permute {1,2,...,m} and {m+1,...,n}.
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Applications of Lagrange's Theorem

For any integers n > 0 and 0 < m < n, the number Wlm)l is an integer.

Proof. The group S, X Sp—m is a subgroup of S, consisting of the
permutations which permute {1,2,...,m} and {m+1,...,n}.
This subgroup has m!(n — m)! elements, and Lagrange’s theorem
gives the result.
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Applications of Lagrange's Theorem

For any positive integers a, b the ratios E ,))b' and 20 ore integers.

{anpe!
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Applications of Lagrange's Theorem

For any positive integers a, b the ratios E ,))b' and 20 ore integers.

{anpe!

Write the integers from 1 to ab as b groups as follows:

1,2,...,ala+1,...,2a| ... |(b—1)a+1...,ba
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Applications of Lagrange's Theorem

For any positive integers a, b the ratios E ,))b' and ((‘,a)bb)b, are integers.

Write the integers from 1 to ab as b groups as follows:
1,2,...,ala+1,...,2a| ... |(b—1)a+1...,ba

There is a subgroup of S, isomorphic to S, x -+ x S, consisting of
—_—

b times
permutations only permuting the numbers within their group.

Lagrange's Theorem implies the first result.
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Applications of Lagrange's Theorem

For any positive integers a, b the ratios E ,))b' and ((‘,a)bb)b, are integers.

Write the integers from 1 to ab as b groups as follows:
1,2,...,ala+1,...,2a| ... |(b—1)a+1...,ba

There is a subgroup of S, isomorphic to S, x -+ x S, consisting of
—_—

permutations only permuting the numbers witbh?r:qisheir group.
Lagrange's Theorem implies the first result.

There is a subgroup of S, of permutations allowed to permute the
above groups of numbers, and after that only to permute numbers
within each group. Note that it's not! just S, x SP.
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Applications of Lagrange's Theorem

| o
For any positive integers a, b the ratios (L) L CL) L integers.

e 2 Ganest

Write the integers from 1 to ab as b groups as follows:
1,2,...,ala+1,...,2a| ... |(b—1)a+1...,ba

There is a subgroup of S, isomorphic to S, x -+ x S, consisting of
—_—

b times
permutations only permuting the numbers within their group.

Lagrange's Theorem implies the first result.

There is a subgroup of S, of permutations allowed to permute the
above groups of numbers, and after that only to permute numbers
within each group. Note that it's not! just S, x SP.

It has b!(a!)? elements, and Lagrange Theorem gives the proof of the
second statement.
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Applications of Lagrange's Theorem

For an integer m > 1 let ¢(m) be the number of invertible numbers
modulo m. For m > 3 the number o(m) is even.
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Applications of Lagrange's Theorem

For an integer m > 1 let ¢(m) be the number of invertible numbers
modulo m. For m > 3 the number o(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)*, with
group operation given by multiplication.
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Applications of Lagrange's Theorem

For an integer m > 1 let ¢(m) be the number of invertible numbers
modulo m. For m > 3 the number o(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)*, with
group operation given by multiplication.

For m > 3, {£1} is a subgroup of the group (Z/m)*.
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Applications of Lagrange's Theorem

For an integer m > 1 let ¢(m) be the number of invertible numbers
modulo m. For m > 3 the number o(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)*, with
group operation given by multiplication.

For m > 3, {£1} is a subgroup of the group (Z/m)*.

This subgroup has size 2, so by Lagrange's theorem the number of
elements in (Z/m)* is even.
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Polya's Enumeration Theorem

Theorem

Suppose that a finite group G acts on a finite set X. Then the number of
colorings of X in n colors inequivalent under the action of G is

Nn n
(n) |G|g§

where c(g) is the number of cycles of g as a permutation of X.
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@ What is the number of necklaces with 4 beads of two colors?
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@ What is the number of necklaces with 4 beads of two colors?

o First compute it directly.
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geaqG

@ What is the number of necklaces with 4 beads of two colors?
o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

Sasha Patotski (Cornell University) Lagrange's Theorem December 8, 2015 11 /12



geaqG

@ What is the number of necklaces with 4 beads of two colors?
o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

@ The identity element has 4 cycles, so it contributes 1-2% = 16.
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What is the number of necklaces with 4 beads of two colors?

First compute it directly.

The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

The identity element has 4 cycles, so it contributes 1 -2* = 16.

@ The rotations by /2 and 37 /2 have only one cycle, so they
contribute 2 - 21 = 4.
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What is the number of necklaces with 4 beads of two colors?

o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

@ The identity element has 4 cycles, so it contributes 1-2% = 16.

@ The rotations by /2 and 37 /2 have only one cycle, so they
contribute 2 - 21 = 4.

@ The rotation by 7 has two cycles, so it contributes 1 - 22 = 4.

Sasha Patotski (Cornell University) Lagrange's Theorem December 8, 2015 11 /12



=
—~
S
~
I
_‘ L
S
A
3

geaqG

What is the number of necklaces with 4 beads of two colors?

o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

@ The identity element has 4 cycles, so it contributes 1-2% = 16.

@ The rotations by /2 and 37 /2 have only one cycle, so they
contribute 2 - 21 = 4.

@ The rotation by 7 has two cycles, so it contributes 1 - 22 = 4.

@ There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles,
with contribute 2-22 +2.23 =24,
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geaqG

What is the number of necklaces with 4 beads of two colors?

o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

@ The identity element has 4 cycles, so it contributes 1-2% = 16.

@ The rotations by /2 and 37 /2 have only one cycle, so they
contribute 2 - 21 = 4.

@ The rotation by 7 has two cycles, so it contributes 1 - 22 = 4.

@ There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles,
with contribute 2-22 +2.23 =24,

Summing up, N(2) = %(16 +4+4424)=6.

Sasha Patotski (Cornell University) Lagrange's Theorem December 8, 2015 11 /12



geaqG

What is the number of necklaces with 4 beads of two colors?

o First compute it directly.

@ The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

@ The identity element has 4 cycles, so it contributes 1-2% = 16.

@ The rotations by /2 and 37 /2 have only one cycle, so they
contribute 2 - 21 = 4.

@ The rotation by 7 has two cycles, so it contributes 1 - 22 = 4.

@ There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles,
with contribute 2-22 +2.23 =24,

e Summing up, N(2) = %(16 +4+4424)=6.

e For n colors, N(n) = %. For example, N(4) = 55.
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One more example

@ How many ways are there to color faces of a cube into n colors?
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One more example

@ How many ways are there to color faces of a cube into n colors?

@ The element 1 € 54 has 6 cycles, so contributes nd.
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One more example

@ How many ways are there to color faces of a cube into n colors?
@ The element 1 € 54 has 6 cycles, so contributes nd.
@ Rotations by 7/2 and 37/2 around axes through opposite faces

(2 -3 = 6 of them) have 3 cycles, so contribute 6 - n3.
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One more example

How many ways are there to color faces of a cube into n colors?
The element 1 € S; has 6 cycles, so contributes nd.
Rotations by 7/2 and 37 /2 around axes through opposite faces

(2 -3 = 6 of them) have 3 cycles, so contribute 6 - n3.

Rotations by 7 (3 of them) have 4 cycles, so contribute 3 - n*.
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One more example

How many ways are there to color faces of a cube into n colors?
The element 1 € S; has 6 cycles, so contributes nd.

Rotations by 7/2 and 37 /2 around axes through opposite faces
(2 -3 = 6 of them) have 3 cycles, so contribute 6 - n3.

Rotations by 7 (3 of them) have 4 cycles, so contribute 3 - n*.
Rotations around axes through midpoints of opposite edges (6 of

them) have 3 cycles, hence contribute 6 - n3.
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One more example

@ How many ways are there to color faces of a cube into n colors?

@ The element 1 € 54 has 6 cycles, so contributes nd.

@ Rotations by 7/2 and 37/2 around axes through opposite faces
(2 -3 = 6 of them) have 3 cycles, so contribute 6 - n3.

@ Rotations by 7 (3 of them) have 4 cycles, so contribute 3 - n*,

@ Rotations around axes through midpoints of opposite edges (6 of
them) have 3 cycles, hence contribute 6 - n3.

@ Rotations around the main diagonals (4 - 2 = 8 of them) have 2
cycles, so contribute 8 - n®.
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One more example

How many ways are there to color faces of a cube into n colors?
The element 1 € S; has 6 cycles, so contributes nd.

Rotations by 7/2 and 37 /2 around axes through opposite faces
(2 -3 = 6 of them) have 3 cycles, so contribute 6 - n3.

Rotations by 7 (3 of them) have 4 cycles, so contribute 3 - n*.
Rotations around axes through midpoints of opposite edges (6 of
them) have 3 cycles, hence contribute 6 - n3.

Rotations around the main diagonals (4 - 2 = 8 of them) have 2

cycles, so contribute 8 - n®.
n®+3n*+12n348n
24 '

e Summing up, N(n) =
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