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Group action definition

Definition

Let G be a group and X be a set. An action of G on X is a
homomorphism G → Bij(X ).

Equivalently, action of G on X is a map G × X → X , (g , x) 7→ g .x
such that g .(h.x) = (gh).x and e.x = x .

Definition

Let G be a group acting on a set X . The orbit of x ∈ X is the set
Gx ⊆ X , i.e. Gx = {g .x | g ∈ G}.
For a point x ∈ X , its stabilizer Gx is the set Gx = {g ∈ G | g .x = x}.
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Abstract groups are not that abstract

Definition

Let G be a group and X be a set. An action of G on X is a
homomorphism G → Bij(X ).

Any abstract group G is actually a transformation group.

Indeed, take X = G with G × X → X being the multiplication map.

In other words, to a g ∈ G we associate a function Lg : X → X ,
mapping h ∈ X = G to Lg (h) := gh.

This defines injective homomorphism ϕ : G → Bij(X ), g 7→ Lg .

Corollary: any finite group is a subgroup of Sn for some n.
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Cosets

Recall: there is an action of G on itself by g .h = Lg (h) = gh called
left multiplication.

There is a similar action called right multiplication given by
g .h = hg−1. Check that this is an action.

What goes wrong if we put g .h = hg?

Recall: if a group G acts on a set X , then any subgroup H ⊂ G also
acts on X .

Definition

Let G be a group, and H ⊂ G be a subgroup. Left (resp. right) cosets are
the orbits of the right (resp. left) multiplication action of H on G .

In other words, a left coset of H in G is gH where g ∈ G (H is on
the right).

A right coset of H in G is Hg where g ∈ G (H is on the left).
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Cosets

Note: H → gH sending h 7→ gh and H → Hg sending h 7→ hg are
bijections.

For any h ∈ H, hH = Hh = H.

Let G = R2, H = R ⊂ G be the horizontal axis. Then the (left and
right) cosets are horizontal lines.

Let G = Z and H = {. . . ,−3, 0, 3, 6, . . . }. What are the cosets?

Let G = S3 and H = {1, (12)}. What are the cosets?
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Theorem

If two left cosets of H in G intersect, then they coincide, and similarly for
right cosets. Thus, G is a disjoint union of left cosets of H and also a
disjoint union of right cosets of H.

Corollary(Lagrange’s theorem) If G is a finite group and H is a
subgroup of G , then the order of H divides the order of G . In
particular, the order of every element of G divides the order of G .

Proof: |G |/|H| is the number of left (or right) cosets, and so is an
integer.
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Applications of Lagrange’s Theorem

Theorem

For any integers n ≥ 0 and 0 ≤ m ≤ n, the number n!
m!(n−m)! is an integer.

Proof. The group Sm × Sn−m is a subgroup of Sn consisting of the
permutations which permute {1, 2, . . . ,m} and {m + 1, . . . , n}.
This subgroup has m!(n −m)! elements, and Lagrange’s theorem
gives the result.
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Applications of Lagrange’s Theorem

Theorem

For any positive integers a, b the ratios (ab)!
(a!)b

and (ab)!
(a!)bb!

are integers.

Write the integers from 1 to ab as b groups as follows:

1, 2, . . . , a | a + 1, . . . , 2a | . . . | (b − 1)a + 1 . . . , ba

There is a subgroup of Sab isomorphic to Sa × · · · × Sa︸ ︷︷ ︸
b times

consisting of

permutations only permuting the numbers within their group.
Lagrange’s Theorem implies the first result.

There is a subgroup of Sab of permutations allowed to permute the
above groups of numbers, and after that only to permute numbers
within each group. Note that it’s not! just Sb × Sb

a .

It has b!(a!)b elements, and Lagrange Theorem gives the proof of the
second statement.
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Applications of Lagrange’s Theorem

Theorem

For an integer m > 1 let ϕ(m) be the number of invertible numbers
modulo m. For m ≥ 3 the number ϕ(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)×, with
group operation given by multiplication.

For m ≥ 3, {±1} is a subgroup of the group (Z/m)×.

This subgroup has size 2, so by Lagrange’s theorem the number of
elements in (Z/m)× is even.

Sasha Patotski (Cornell University) Lagrange’s Theorem December 8, 2015 9 / 12



Applications of Lagrange’s Theorem

Theorem

For an integer m > 1 let ϕ(m) be the number of invertible numbers
modulo m. For m ≥ 3 the number ϕ(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)×, with
group operation given by multiplication.

For m ≥ 3, {±1} is a subgroup of the group (Z/m)×.

This subgroup has size 2, so by Lagrange’s theorem the number of
elements in (Z/m)× is even.

Sasha Patotski (Cornell University) Lagrange’s Theorem December 8, 2015 9 / 12



Applications of Lagrange’s Theorem

Theorem

For an integer m > 1 let ϕ(m) be the number of invertible numbers
modulo m. For m ≥ 3 the number ϕ(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)×, with
group operation given by multiplication.

For m ≥ 3, {±1} is a subgroup of the group (Z/m)×.

This subgroup has size 2, so by Lagrange’s theorem the number of
elements in (Z/m)× is even.

Sasha Patotski (Cornell University) Lagrange’s Theorem December 8, 2015 9 / 12



Applications of Lagrange’s Theorem

Theorem

For an integer m > 1 let ϕ(m) be the number of invertible numbers
modulo m. For m ≥ 3 the number ϕ(m) is even.

Invertible numbers modulo m for a group, denoted (Z/m)×, with
group operation given by multiplication.

For m ≥ 3, {±1} is a subgroup of the group (Z/m)×.

This subgroup has size 2, so by Lagrange’s theorem the number of
elements in (Z/m)× is even.

Sasha Patotski (Cornell University) Lagrange’s Theorem December 8, 2015 9 / 12



Polya’s Enumeration Theorem

Theorem

Suppose that a finite group G acts on a finite set X . Then the number of
colorings of X in n colors inequivalent under the action of G is

N(n) =
1

|G |
∑
g∈G

nc(g)

where c(g) is the number of cycles of g as a permutation of X .
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N(n) =
1

|G |
∑
g∈G

nc(g)

What is the number of necklaces with 4 beads of two colors?

First compute it directly.

The symmetry group of a square has 8 elements: 4 rotations and 4
reflections.

The identity element has 4 cycles, so it contributes 1 · 24 = 16.

The rotations by π/2 and 3π/2 have only one cycle, so they
contribute 2 · 21 = 4.

The rotation by π has two cycles, so it contributes 1 · 22 = 4.

There are 2 reflections with 2 cycles, and 2 reflections with 3 cycles,
with contribute 2 · 22 + 2 · 23 = 24.

Summing up, N(2) = 1
8(16 + 4 + 4 + 24) = 6.

For n colors, N(n) = n4+2n3+3n2+2n
8 . For example, N(4) = 55.
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One more example

How many ways are there to color faces of a cube into n colors?

The element 1 ∈ S4 has 6 cycles, so contributes n6.

Rotations by π/2 and 3π/2 around axes through opposite faces
(2 · 3 = 6 of them) have 3 cycles, so contribute 6 · n3.

Rotations by π (3 of them) have 4 cycles, so contribute 3 · n4.

Rotations around axes through midpoints of opposite edges (6 of
them) have 3 cycles, hence contribute 6 · n3.

Rotations around the main diagonals (4 · 2 = 8 of them) have 2
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